2,025 research outputs found

    Gain-Scheduled Controller for Fault Accommodation in Linear Parameter Varying Systems with Imprecise Measurements

    Get PDF
    We present the design of H∞ and H2 gain-scheduled fault-accommodation controllers for discrete-time Linear Parameter Varying systems. We design our conditions as Bilinear Matrix Inequalities, assuming that the scheduled parameters are imprecise, which is a commonly found characteristic of practical applications that happens due to measurement noise and inaccuracy on its estimation/acquisition procedure. The proposed solution is based on the use of a multi-simplex approach for solving the main conditions, which guarantees the stability of the system under imprecise measurements on the scheduling parameters. The efficacy of the proposed approach is illustrated with a numerical example

    A Novel Theoretical Probabilistic Model for Opportunistic Routing with Applications in Energy Consumption for WSNs

    Get PDF
    This paper proposes a new theoretical stochastic model based on an abstraction of the opportunistic model for opportunistic networks. The model is capable of systematically computing the network parameters, such as the number of possible routes, the probability of successful transmission, the expected number of broadcast transmissions, and the expected number of receptions. The usual theoretical stochastic model explored in the methodologies available in the literature is based on Markov chains, and the main novelty of this paper is the employment of a percolation stochastic model, whose main benefit is to obtain the network parameters directly. Additionally, the proposed approach is capable to deal with values of probability specified by bounded intervals or by a density function. The model is validated via Monte Carlo simulations, and a computational toolbox (R-packet) is provided to make the reproduction of the results presented in the paper easier. The technique is illustrated through a numerical example where the proposed model is applied to compute the energy consumption when transmitting a packet via an opportunistic network

    Developing a class solution for Prostate Stereotactic Ablative Body Radiotherapy (SABR) using Volumetric Modulated Arc Therapy (VMAT)

    Get PDF
    Background and purpose To develop a class solution for prostate Stereotactic Ablative Radiotherapy (SABR) using Volumetric Modulated Arc Therapy (VMAT). Materials and methods Seven datasets were used to compare plans using one 360° arc (1FA), one 210° arc (1PA), two full arcs and two partial arcs. Subsequently using 1PA, fifteen datasets were compared using (i) 6 mm CTV–PTV margins, (ii) 8 mm CTV–PTV margins and (iii) including the proximal SV within the CTV. Monaco™ 3.2 (Elekta™) was used for planning with the Agility™ MLC system (Elekta™). Results Highly conformal plans were produced using all four arc arrangements. Compared to 1FA, 1PA resulted in significantly reduced rectal doses, and monitor units and estimated delivery times were reduced in six of seven cases. Using 6 mm CTV–PTV margins, planning constraints were met for all fifteen datasets. Using 8 mm margins required relaxation of the uppermost bladder constraint in three cases to achieve adequate coverage, and, compared to 6 mm margins, rectal and bladder doses significantly increased. Including the proximal SV required relaxation of the uppermost bladder and rectal constraints in two cases, and rectal and bladder doses significantly increased. Conclusions Prostate SABR VMAT is optimal using 1PA. 6 mm CTV–PTV margins, compatible with daily fiducial-based IGRT, are consistently feasible in terms of target objectives and OAR constraints

    Topological Features in Ion Trap Holonomic Computation

    Get PDF
    Topological features in quantum computing provide controllability and noise error avoidance in the performance of logical gates. While such resilience is favored in the manipulation of quantum systems, it is very hard to identify topological features in nature. This paper proposes a scheme where holonomic quantum gates have intrinsic topological features. An ion trap is employed where the vibrational modes of the ions are coherently manipulated with lasers in an adiabatic cyclic way producing geometrical holonomic gates. A crucial ingredient of the manipulation procedures is squeezing of the vibrational modes, which effectively suppresses exponentially any undesired fluctuations of the laser amplitudes, thus making the gates resilient to control errors.Comment: 9 pages, 4 figures, REVTE

    Genomic Profiling of T-Cell Neoplasms Reveals Frequent

    Get PDF
    Purpose: The promise of precision oncology is that identification of genomic alterations will direct the rational use of molecularly targeted therapy. This approach is particularly applicable to neoplasms that are resistant to standard cytotoxic chemotherapy, like T-cell leukemias and lymphomas. In this study, we tested the feasibility of targeted next-generation sequencing in profiles of diverse T-cell neoplasms and focused on the therapeutic utility of targeting activated JAK1 and JAK3 in an index case. Patients and Methods: Using Foundation One and Foundation One Heme assays, we performed genomic profiling on 91 consecutive T-cell neoplasms for alterations in 405 genes. The samples were sequenced to high uniform coverage with an Illumina HiSeq and averaged a coverage depth of greater than 500× for DNA and more than 8M total pairs for RNA. An index case of T-cell prolymphocytic leukemia (T-PLL), which was analyzed by targeted next-generation sequencing, is presented. T-PLL cells were analyzed by RNA-seq, in vitro drug testing, mass cytometry, and phospho-flow. Results: One third of the samples had genomic aberrations in the JAK-STAT pathway, most often composed of Conclusion: These results underscore the utility of profiling occurrences of resistance to standard regimens and support JAK enzymes as rational therapeutic targets for T-cell leukemias and lymphomas

    Genomic Profiling of T-Cell Neoplasms Reveals Frequent JAK1 and JAK3 Mutations With Clonal Evasion From Targeted Therapies

    Get PDF
    Purpose: The promise of precision oncology is that identification of genomic alterations will direct the rational use of molecularly targeted therapy. This approach is particularly applicable to neoplasms that are resistant to standard cytotoxic chemotherapy, like T-cell leukemias and lymphomas. In this study, we tested the feasibility of targeted next-generation sequencing in profiles of diverse T-cell neoplasms and focused on the therapeutic utility of targeting activated JAK1 and JAK3 in an index case. Patients and Methods: Using Foundation One and Foundation One Heme assays, we performed genomic profiling on 91 consecutive T-cell neoplasms for alterations in 405 genes. The samples were sequenced to high uniform coverage with an Illumina HiSeq and averaged a coverage depth of greater than 500× for DNA and more than 8M total pairs for RNA. An index case of T-cell prolymphocytic leukemia (T-PLL), which was analyzed by targeted next-generation sequencing, is presented. T-PLL cells were analyzed by RNA-seq, in vitro drug testing, mass cytometry, and phospho-flow. Results: One third of the samples had genomic aberrations in the JAK-STAT pathway, most often composed of JAK1 and JAK3 gain-of-function mutations. We present an index case of a patient with T-PLL with a clonal JAK1 V658F mutation that responded to ruxolitinib therapy. After relapse developed, an expanded clone that harbored mutant JAK3 M511I and downregulation of the phosphatase, CD45, was identified. We demonstrate that the JAK missense mutations were activating, caused pathway hyperactivation, and conferred cytokine hypersensitivity. Conclusion: These results underscore the utility of profiling occurrences of resistance to standard regimens and support JAK enzymes as rational therapeutic targets for T-cell leukemias and lymphomas
    • …
    corecore